Indian Statistical Institute Bangalore Centre B.Math (Hons.) III Year 2012-2013 Second Semester Sample Survey and Design of Experiments

Semestral Examination

Date: 10.05.13

Answer as many questions as possible. The maximum you can score is 112. All the notation have their usual meaning. State clearly the results you use.

- 1. Suppose a sample of size n is to be drawn from N units using SRSWOR scheme. Let Y denote the variable under study and X denote an auxiliary variable.
 - (a) Define ratio estimator (\bar{Y}_R) in this context and explain when it is useful.
 - (b) Obtain the expressions for the following. (i) $V[\bar{y}]$ and (ii) $Cov[\bar{x}, \bar{y}]$.
 - (c) Show that \bar{Y}_R is biased for the population mean. Obtain an expression for the bias, correct upto order (1/n), in terms of S_x^2, S_y^2 and S_{xy} .
 - (d) Suggest a sampling scheme for which the ratio estimator (\bar{Y}_R) is unbiased for the population mean. Justify. $[3 + 5 \times 2 + 8 + (2+8) = 31]$
- 2. Consider a general sampling scheme with fixed sample size(n), where units are selected without replacement. If π_i denote the probability that the i^{th} unit is in the sample, show that $\sum_{i=1}^{N} \pi_i = n$.
- 3. (a) Define systematic sampling. Provide an unbiased estimator Y_{sy} of the population mean obtained by using systematic sampling. Find its variance.
 - (b) Is it possible to estimate the variance of Y_{sy} ? Justify. Show that the variance of Y_{sy} can be estimated by taking more than one systematic sample. [(2+2+4)+(2+7)=16]
- 4. After the decision to take a simple random sample had been made, it was realized that y_1 would be unusually low and y_N would be unusually high. Therefore, the following estimator of \bar{Y} was suggested. Take a constant c. Then, define

 $egin{array}{lll} ar{Y_S} &=& ar{y} + c & ext{if the sample contains } y_1 ext{ but not } y_N \ &=& ar{y} - c & ext{if the sample contains } y_N ext{ but not } y_1 \ &=& ar{y} & ext{for all other samples} \end{array}$

Prove that \bar{Y}_S is unbiased and its variance is $(1 - n/N) \left[\frac{S^2}{n} - \frac{2c}{(N-1)} (y_N - y_1 - nc) \right]$. [8]

- 5. An experiment was to be carried out to compare the effectiveness of v medicines for a particular illness. Since the condition of a patient may also depend on the hospital, patients were chosen from b different hospitals. Each patient was given a medicine for a fixed period and the response (Y) after this period was noted.
 - (a) Write an appropriate linear model.

(b) Assuming that k patients were chosen from the each hospital, derive the reduced normal equations for the effects of the medicines in the form

$$C\hat{\tau} = Q. \tag{1}$$

- (c) Show that (i) rank of C is $\leq v-1$, (ii) $E(Q)=C\tau$, (iii) $COV(Q)=\sigma^2C$ and (iv) a linear function $l'\tau$ is estimable whenever l is in the column space of C.
- (d) Suppose $\hat{\tau}$ is a solution of (1). Consider the statement " $\sigma^2 C^-$ acts as the covariance matrix of $\hat{\tau}$ ". Is $\sigma^2 C^-$ really the covariance matrix of $\hat{\tau}$? What is the meaning of the phrase acts as in the statement above? [Here A^- is a generalized inverse of A].

$$[3+7+(3+3+3+3)+6=28]$$

- 6. (a) Define a BIBD. If N is the incidence matrix of a BIBD (v, b, r, k, λ) show that $NN' = (r \lambda)I_v + \lambda J_v$. [Here J_v is the $v \times v$ all-one matrix.]
 - (b) Suppose an experiment is conducted using a BIBD.
 - (i) Show that the C-matrix is of the form a(I-J/v). Find a in terms of the parameters of the BIBD.
 - (ii) Consider an l satisfying $l'1_v = 0$. [Here 1_v is a $v \times 1$ vector of all ones]. Show that $l'\tau$ is estimable and the BLUE of $l'\tau$ is p.l'Q. Express p in terms of the parameters of the BIBD.
 - (c) Consider an Abelian group (V,+) with v elements. Consider an array $A = ((a_{ij})), 1 \le j \le k, 1 \le i \le h$ with elements from V. Suppose A satisfies the property that every non-zero element of V appear λ times in δ , where δ is a multiset defined as follows. Let δ_i be the multiset : $\delta_i = \{a_{ij} a_{il}, j \ne l, j, l = 1, \dots k\}$. and $\delta = \bigsqcup_{i=1}^h \delta_i$. [Here \sqcup denotes union counting multiplicities].

Then, show that \exists a BIBD (v, b=hv,k, r=hk, λ).

(d) Construct a BIBD with $v=b=7, r=k=3, \lambda=1.$

$$[(3+3)+(2+(2+2))+5+4=21]$$

- 7. In a paper manufacturing factory, the percentage of hardwood concentration in raw pulp and the cooking time of pulp are being investigated for their effects on the strength of the paper.
 - (a) Suppose two concentrations (C) and two cooking times (T) are used and two observations are taken for each level combination. Explain what is meant by (i)the main effects of C and T and (ii) the interaction effect CT and how one can determine them.
 - (b) Construct a 2^4 experiment on blocks of size 4, so that no main effect is confounded. Find out the effects that are confounded in your design with justification.

$$[(3+4)+6=13]$$